Оплаченная реклама

luni, 25 februarie 2013

PRINCIPIUL TERŢULUI EXCLUS

PRINCIPIUL TERŢULUI EXCLUS Se enunţă astfel:
a) este necesar ca un lucru să posede sau să nu posede o anume proprietate, terţul este exclus (în latină tertium non datur).
b) două judecăţi contradictorii nu pot fi ambele false în acelaşi timp şi sub acelaşi raport; din două judecăţi contrare numai una poate fi falsă; nu se poate ca o propoziţie să nu fie nici adevărată, nici falsă.
         În formulă:
p v`(p sau non p)
Fie propoziţiile Unii oameni sunt drepţi şi Unii oameni nu sunt drepţi. În acest exemplu propoziţiile nu pot fi împreună false, în acelaşi timp şi sub acelaşi raport, putând fi însă adevărate.
Comparând cele două principii, putem afirma că:
Ø dacă principiul noncontradicţiei afirmă o imposibilitate, nu se poate p şi non-p, principiul terţului exclus afirmă o necesitate, trebuie să fie p sau non-p, a treia posibilitate nu există, terţul este exclus;
Ødacă principiul noncontradicţiei stabileşte falsul unei teze, principiul terţului exclus stabileşte adevărul unei teze;
Øprincipiul noncontradicţiei cere ca predicatele să se excludă dar nu le limitează numărul.
Ex: Balena este mamifer (nu peşte, pasăre, reptilă,  batracian)
Øprincipiul terţului exclus nu cere ca predicatele să se excludă, dar le limitează numărul la două.
Cele două principii se pot combina în aşa-numitul principiu al bivalenţei: Orice propoziţie este sau adevărată sau falsă, terţul este exclus
Подпись:  Logică Øbivalentă Øpolivalentă  Logica clasică este o logică bivalentă, mulţimea propoziţiilor se divide în două clase, adevărate sau false, terţul este exclus. Totuşi, Aristotel a pus problema viitorilor contingenţi: Mâine va fi o bătălie navală este o propoziţie contingentă[1]. În timp ce Aristotel şi Epicur, pentru a evita fatalismul, susţin contingenţa viitorului, stoicii (Chrisipp) susţin aplicarea terţului şi la viitor, pentru a justifica universalitatea necesităţii. Eroarea lor este legată de acest ontologism.
Logica modernă este nechrisippiană. În anul 1920, logicianul Ian Lukasiewicz construieşte primul sistem de logică polivalentă introducând alături de adevăr şi fals o a treia valoare aletică[2], probabilul. În logica trivalentă intră în acţiune principiul quartului exclus, în cea tetravalentă, principiul quintului exclus.
Cu referire la sistemele de propoziţii formularea este: acceptăm p sau nu acceptăm p şi serveşte selecţiei propoziţiilor coerente care-mi servesc tezei de demonstrat sau argumentat.
Împreună cele două principii (principiul noncontradicţiei şi cel al terţului exclus) fundamentează demonstraţia prin reducere la absurd.
Respectarea acestor principii generează gândirii consistenţă, consecvenţă şi capacitate de decizie riguroasă.




[1] termenul contingent este antonimul termenului necesar.
[2] de la grecescul aletheia = adevăr.

Niciun comentariu:

Trimiteți un comentariu

Arhiva